2012 IEEE Symposium on Visual Languages and Human-Centric Computing

An Exploratory Study of Blind Software Developers

Sean Mealin and Emerson Murphy-Hill
Department of Computer Science
North Carolina State University
Raleigh, North Carolina
{spmealin,emerson} @csc.ncsu.edu

Abstract—As a research community, we currently know very
little about the challenges faced by blind software developers.
Without knowing what those challenges are, the community can-
not effectively address these challenges. In this paper, we describe
the first exploratory empirical study, where we conducted eight
interviews with blind software developers to identify aspects of
software development that are a challenge. Our results suggest
that visually impaired software developers face challenges, for
instance, when using screen readers to look up information when
writing code. We discuss a variety of implications, including that
blind software developers need additional support in discovering
relevant software development tools.

I. INTRODUCTION

In the United States and around the world, there is a severe
shortage of software developers to design, build, and maintain
the software that is increasingly critical to our day to day
lives [4]. At the same time, current software developers are
a largely homogeneous group [1], and diversifying this group
could yield significant benefits to society.

People who are blind or visually impaired may be good
candidates to fill this shortage and diversify the software
development workforce. Since software is not an inherently
visible artifact, it would seem that a lack of sight would not put
blind software developers at a disadvantage [9]. Blind people’s
use of screen readers, programs that verbalize text on the
screen, suggests that the textual source code used to implement
most software should be accessible to blind developers. In fact,
blind developers’ compensatory abilities, such as enhanced
serial memory [5], may give them significant advantages over
sighted developers.

At the same time, even a cursory look at modern software
development makes it apparent that blind software developers
may also face significant challenges. For instance, use of
visual languages and notations, such as the Unified Modeling
Language, do not appear to be readily accessible to blind
developers. As another example, the graphical user interfaces
used in integrated development environments (IDEs) may also
be a challenge for blind software developers.

Some research has been done in the past to create assistive
tools to aid blind people in software development. One is
SODBeans, an implementation of the NetBeans IDE created
specifically for blind developers [8]. Another is WAD, a
debugger for Visual Studio that enables blind software de-
velopers to understand dynamic program behavior [7]. The
APL programming language was designed specifically for

978-1-4673-0853-3/12/$31.00 ©2012 TEEE

blind software developers [6]. TeDUB allows blind software
developers to use diagrams [2].

Despite the interest in creating tools for blind software de-
velopers, to our knowledge, there are no empirical studies that
systematically characterize existing blind software developers.
We contribute the first study that does so. In understanding
the challenges and opportunities faced by current software
developers who are blind, we envision researchers, educators,
and toolsmiths enabling blind people to build the software of
the future. This paper is a small step towards that vision.

II. THE STUDY

A. Research questions

To better understand blind software developers, we sought
to answer four research questions:

RQ1

RQ2
RQ3

What tools do blind software developers use?
What practices do blind software developers use?
How do blind software developers collaborate with
other software developers?

What attitudes do blind software developers hold
about software development?

RQ4

B. Methodology

To answer our research questions, we conducted qualitative
interviews. We chose qualitative interviews as a research
method in an attempt to identify as many areas of future
research as possible by enabling interviewees to elaborate
on specific topics when they felt it was necessary. For each
research question, we asked interviewees to answer a set of
detailed questions. Depending on each interviewee’s response,
we elicited more detailed answers. The first author, who is
studying software development as a university undergraduate
and who also is blind, conducted the interviews via Skype. The
interviews ranged from just under one hour to approximately
two hours; interviewees controlled the pace of the interview.
The full interview script can be found here: http://www4.ncsu.
edu/~spmealin/DevStudy/Interview_Script.docx.

We recruited interviewees who are legally blind and actively
engaged in software development. We recruited interviewees
by sending out a solicitation on the Program-L mailing list,
which serves blind software developers. Some recipients also
forwarded our solicitation to other mailing lists, as well as
their friends.

71

TABLE I
DEMOGRAPHICS OF PARTICIPANTS.

ID Exp. Degree of Blindness Programming Languages

Pl 21 Basic shape & color ident. C#, Jaws Script, Python

P2 12 No sight Assembler, C, Groovy, Java

P3 40 No sight C++, Fortran 77

P4 10 No sight Python

P5 25 Basic shape & color ident. Assembler, C, C++, Python

P6 20 Basic shape & color ident., Action Script, C, Java,
and large text Javascript, Perl

P7 13 Basic color ident. C#, Javascript, PHP, Ruby

P8 31 Basic shape & color ident. C#, T-SQL, Visual Fox Pro

C. Demographics

We attracted eight people to participate; demographics
are shown in Table I. Each participant is identified with
an anonymous ID. The Exp. column indicates how many
years of experience each interviewee had in programming.
The Degree of Blindness indicates how much usable sight
participants reported. Programming Languages indicates the
major programming languages used by each participant. All
interviewees are male. Seven were engaged in developing
commercial software, whereas one developed free software.
All participants were located in the continental United States,
each in a different state. P4 was an undergraduate student
while developing software as part of his job. We therefore
considered all interviewees to be software developers, with
varying levels of experience.

III. RESULTS
A. RQI: Tools

Accessibility Tools. Interviewees used several accessible
technologies to access the software that they need to use for
their development tasks. All interviewees with the exception
of P7 primarily use the commercial screen-reader Jaws for
Windows, and P1, P4 and P8 secondarily use the open-source
screen reader Non Visual Desktop Access. Only P7 uses Non
Visual Desktop Access as a primary screen reader. When
looking at code, P2, P3, P7 and P8 reported using a refreshable
Braille display, which is a device that converts a single line
of text on screen to a single line of Braille that can then
be felt with the fingers. P7 uses a Braille display because
it makes it easier to do parentheses matching. Interviewee P2
said he used the Braille display when looking at hexadecimal
output; he reported the reason was because screen readers
typically try to pronounce adjacent letters as a single word.
For instance, screen readers make it difficult to distinguish
between the hexadecimal numbers ‘EF’ and ‘EFF’ because
they sound identical when spoken aloud.

Editors and IDEs. When writing code, interviewees most
commonly reported using text editors, while a few use inte-
grated development environments (IDEs). In terms of editors,
P1, P2, P4 and P7 reported primarily using Notepad or another
text editor; for example, P7 reported using Notepad++, P4 uses
Notepad, and interviewees P1 and P2 use EdSharp, a feature-
rich editor specifically created for the blind. In terms of IDEs,
P6 uses Eclipse, both P3 and P7 use Visual Studio, P8 uses
Visual FoxPro, and P5 uses the IDE Code Warrior. Some in-
terviewees reported using different editors or IDEs, depending

72

on their development needs. For example, P2 primarily uses
a text editor, but has used Eclipse in the past when he has
worked with Java, and P7 spends his time both in Notepad++
and Visual Studio. Interviewees who said they tended to use
alternatives to mainstream IDEs cited lack of accessibility in
those environments as the motivation; however, the fact that
five interviewees use IDEs for some tasks suggests that at least
specific portions of IDEs are usable. These results motivate
existing research into making IDEs more accessible [8].

Other Tools. Apart from editors and IDEs, interviewees re-
ported sparse usage of other programming tools. For instance,
we asked all participants about static analysis tool usage, but
only PS5 responded positively; apparently most interviewees
were simply not aware of them. We also asked the last six
interviewees (P1, P3, P4, P6, P7 and P8) about their use
of debuggers. P3 and P6 used basic debugger functionality
such as breakpoints and stepping through code, while all six
interviewees used “printf debugging.” Interviewees mentioned
that accessibility of debugging tools could be a significant
barrier to use. P7 gave the example of FireBug, a javascript
debugger, as an example of an inaccessible tool; he used
javascript alert boxes as his preferred “printf” debugging
tool. These results motivate existing research into accessible
debugging tools [7].

B. RQ2: Practices

Getting an Overview. We were curious about how blind
developers get a high-level overview of their code, because a
typical mechanism employed by sighted developers, code bea-
cons [10], would seemingly be unavailable to blind developers.
This is because screen readers work in a highly linear fashion,
forcing blind users to read through an entire document. For
instance, depending on the language, finding the start of blocks
of code may not be as easy without reading through all of the
lines in the file.

To get an overview of code, all interviewees except P8
indicated that they rely heavily on API documentation. By
reading the documentation, they are able to get an overview
of the available methods and the structure of the code without
delving into implementation details. Interviewees that work
with C-like languages reported that reading header files is
similarly helpful. P1, P2, P7 and P8 said that using the find tool
in their editor is another way of getting structural information
without having to read every line. However, they said that
it is not as helpful as good documentation because finding
keywords to jump to can be difficult. For example, jumping to
the public keyword in a Java source file will help find all
of the methods that are public, but it will not show methods
that are private or declared with package-level access.

Information Seeking. We were interested in how blind de-
velopers look up information when writing code. For instance,
when a sighted developer needs to look up an identifier, they
have several options such as scrolling the editor to view the
identifier. When it is found, they can start typing, because the
location of the cursor has not changed. Users of screen readers
are not able to do the same thing; it is not possible to look

through the code without moving the cursor as well. In order to
find something such as the spelling of a variable’s identifier,
it is necessary to move the cursor to where the variable is
declared so the screen reader will verbalize the information.
Once the information has been obtained, a screen reader user
must then move the cursor back to where they were editing.
To help alleviate this problem, all interviewees except P1
indicated that they regularly have a temporary text buffer
open to write notes, such as method or variable names. By
frequently inserting identifiers into this buffer, interviewees
reported being able to quickly reference those identifiers
without losing their place in the code that they were editing.
Interestingly, P3, P4, P6, P7 and P8 also reported using such
buffers for out-of-context editing. These interviewees said that
copying a block of code to a buffer and then editing it before
copying it back was preferable to editing it in-place. They did
this because using a separate window for the snippet made it
easier to jump to the beginning or end of the code block; if
they were to try this in the original source file, they would
just jump to the beginning or end of the file and completely
lose context. In this way, out-of-context editing serves as a
mechanism to predictably constrain cursor movement.

C. RQ3: Collaboration

Teams. P2, P5, P6, P7 and P8 reported on working in
teams. When working with teammates, P7 reported working
on separate computers and verbally communicating via line
numbers in source code that the team shared using a ver-
sion control system. He reported several positive experiences
working in a team, such as the ability to bounce ideas off of
coworkers, to distribute knowledge about the software, and to
have sighted coworkers be able to inspect the visual elements
of the software he writes, such as the user interface to his
web application. P8 reported interacting with other developers
at meetings, where he usually asks for any material discussed
at the meeting to be sent to him ahead of time. However,
he reported infrequent interaction with his teammates. One
difficulty he faces when interacting with teammates on the
same computer is that when sighted developers watch him
work with a screen reader, it embarrasses him that he cannot
accomplish some tasks as fast as they can.

Diagrams. We asked interviewees to relate their experiences
with communicating UML and other visual notations with
their teammates. P7 noted that whenever coworkers use UML
diagrams, he asks them to verbalize the content of those
diagrams, such as method names and class names. If he needs
to keep track of this information, he reported that he writes it
down in a textual format, a practice he was satisfied with. P5
said that he did not have problems with diagrams because the
same information was usually present elsewhere, such as in
the documentation. P8 said that he was occasionally handed a
UML diagram to implement, but found them inaccessible. P3
and P8 encountered UML diagrams at work, but avoided using
them, while P1, P2 and p4 did not encounter visual diagrams at
all. P6 found that diagrams that illustrated complicated systems
try to communicate so much information to a viewer that some

ambiguity due to interpretation is always present. He forced
developers on the team that he led to explain diagrams in
“simple English,” which he thought is a lot more explicit and
reduced errors due to interpretation.

D. RQA4: Attitudes

Career. Interviewees reported ending up as software de-
velopers through a variety of career paths, though most said
that their blindness played some role in their career choice.
P2 and P4 said that they became interested in development
after using a note taker designed specifically for the blind that
happened to come with an interpreter for the basic language.
Interviewee P1 said that he started to write software because
he could not find accessible software that would help him
accomplish his tasks. P7 thought that software development
would be a relatively accessible field that he could turn into
a career. P3 moved to software development after he found
that his vision was not enough for him to do tasks that he felt
was crucial to the research process, such as sharing data with
colleagues on a blackboard. P8 started as an architect, but was
encouraged by friends to look into software development; he
regarded this as fortunate, because losing the remainder of his
vision would have made tasks such as drawing or computer
aided design difficult. Overall, interviewees reported finding
their work motivating and rewarding for reasons such as pride
in creating something new and overcoming their disability.

Challenges. We also asked interviewees about their attitudes
towards their disability, specifically whether it put them at a
disadvantage with respect to software development. A recur-
ring theme was difficulty with development tasks with a visual
component, such as program architecture and user interface
layouts. P3 and P4 said that finding mathematical formulas
in an accessible form is another disadvantage, because most
formulas on the web are posted as images that cannot be used
with a screen reader. Interviewee P5 complained about the
inaccessibility of visual languages such as LabVIEW. P8 said
that he felt that he was at a disadvantage because his sighted
teammates are able to navigate and use software with a mouse
much faster than he is able to using a keyboard. When asked
specifically about user interface design tasks, such as the use
of Cascading Style Sheets, nearly all of the interviewees said
that they felt that they are not able to do them as efficiently
or confidently as sighted developers.

Opportunities. When we asked the interviewees about their
advantages versus sighted colleagues, interviewees P3, P5, P6,
P7 and P8 were able to give a software development subject
that they feel like they excel in, P1 and P4 did not know, and
P2 felt that he does not have any comparative advantages. P7
and P8 felt that they do well with tasks that are not easy to
visualize, such as algorithm design. They said that they are
able to create a detailed mental model of the code that helps
them understand it. P6 said that he has an advantage because
he can read extremely quickly with his screen reader; this is
useful, for instance, for reading through documentation. He
also feels that he excels in program architecture, an aspect of
development that other interviewees try to avoid.

73

IV. DISCUSSION

Multi-line Braille Displays. We found that some inter-
viewees use a Braille display quite heavily while writing
code. Braille displays come in multiple sizes, but most are
limited to displaying a single line of text at once. While this
is perfectly acceptable for tasks such as reading documents,
where it is common to move forward sequentially, working
with software may be a task where multi-line displays are
beneficial. For instance, since one interviewee used a single-
line Braille display to match parentheses on a single line of
code, it seems reasonable that a multi-line display would help
blind developers match brackets across multiple lines of code.
Multi-line Braille displays could also help blind developers
navigate code structures more quickly than they can with a
screen reader by helping them “feel” the shape of code.

Tool Use and Discovery. We were somewhat surprised
about the general lack of software development tool usage by
blind software developers; we posit that this may be because
the learning curve for software development tools is different
for blind developers than for sighted developers. Sighted
developers can expand their tool repertoire by exploring the
graphical affordances of their IDEs, such as by clicking on
toolbar icons that they notice. Blind developers do not have
this luxury, both because screen readers cannot verbalize
graphical icons, and because a sighted developer cannot notice
tools on the periphery of their work because screen readers
focus the developer on the location of her cursor. Alternative
mechanisms for helping blind software developers learn about
tools that they do not know about may be beneficial, such as
command recommender systems [3].

In retrospect, one kind of tool that may have been beneficial
to interviewees is code navigation tools. For example, in the
Eclipse IDE, there is a command that moves the cursor back
to the last source code that was edited; this command may
be useful when blind developers use the cursor and screen
reader to look up relevant information, but then need to
navigate back to the last edited text position. It may be that
interviewees were either not aware of this tool, or that it does
not completely solve their navigational challenges. Further
research is necessary to determine whether such existing
navigational tools would be useful for blind developers, or
if novel tools are needed; such research could likely take the
form of observational studies of blind developers performing
program editing tasks.

Education. Education may be another fruitful avenue to
increase tool usage among future blind software developers.
Our limited experience has been that blind computer science
students are excused from learning aspects of software de-
velopment that are not readily accessible. Instead, a better
approach would be to equip students with the tools they need
to efficiently complete tasks that are traditionally difficult for
blind software developers, such as code navigation tools.

Language Choice. We were surprised that Python is such
a popular programming language among interviewees. As
some interviewees pointed out, white space is sometimes

74

difficult to use when using a screen reader, yet whitespace
is critical to the semantics of Python. When asked why he
uses Python as a primary language, P4 said that Python has
features that more than make up for any inconvenience that
indentation may cause. For example, due to Python being an
interpreted language, he is able to dynamically inspect and
alter a program’s objects in the Python interpreter. He believes
that being able to do that is much more useful than using
debuggers of compiled languages, such as C. Because the
Python interpreter is text based, he said that almost everything
is accessible through his screen reader.

V. CONCLUSION AND FUTURE WORK

In a series of interviews, we have explored the challenges
faced by blind software developers. Some results were ex-
pected, such as the inaccessibility of IDEs, but others were
not, such as the frequent use of out-of-context editing. We have
discussed several implications, but future work is still needed
to quantify the extent to which our conclusions generalize
and to understand the causes of some of our observations.
For example, interviewees hinted about some of the tasks that
they may be especially skilled at because of their blindness,
but it was apparent to us that interviewees had not spent a
lot of time reflecting on what they themselves are good at. A
different type of study may further illuminate this particular
subject; for instance, observational studies or interviews with
blind developers’ colleagues may help expose the unique skills
that blind people bring to the software development process.

ACKNOWLEDGMENTS

The authors would like to thank those who agreed to be in-
terviewed, and our anonymous reviewers for their suggestions.

REFERENCES

[1] M. Fowler. The developer world has serious issues with diversity. http:
/ljava.dzone.com/articles/developer-world-has-serious, Jan. 2012.

[2] A. King, P. Blenkhorn, D. Crombie, S. Dijkstra, G. Evans, and J. Wood.
Presenting UML software engineering diagrams to blind people. In
Computers Helping People with Special Needs, volume 3118 of Lecture
Notes in Computer Science, pages 626—-626. Springer, 2004.

[3] J. Matejka, W. Li, T. Grossman, and G. Fitzmaurice. Community-
Commands: Command recommendations for software applications. In
Proceedings of UIST '09, pages 193-202, 2009.

[4] C. Nickisch. For software developers, a bounty of opportunity. News
Story, National Public Radio, Sept. 2011.

[5] N. Raz, E. Striem, G. Pundak, T. Orlov, and E. Zohary. Superior serial
memory in the blind: a case of cognitive compensatory adjustment. In
Current Biology, volume 17, pages 1129-33, 2007.

[6] J. Sanchez and F. Aguayo. Blind learners programming through audio.
In Proceedings of CHI ’05, pages 1769-1772, 2005.

[71 A. Stefik, R. Alexander, R. Patterson, and J. Brown. WAD: A feasibility
study using the wicked audio debugger. In Proceedings of ICPC’07,
pages 69-80, June 2007.

[8] A. Stefik, A. Haywood, S. Mansoor, B. Dunda, and D. Garcia. Sodbeans.
In Proceedings of ICPC’09, pages 293-294, May 2009.

[9] T. D. Sterling, M. Lichstein, F. Scarpino, and D. Stuebing. Professional

computer work for the blind. Commun. ACM, 7(4):228-230, Apr. 1964.

A. von Mayrhauser and A. M. Vans. Program comprehension during

software maintenance and evolution. Computer, 28:44-55, 1995.

[10]

